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Abstract—We demonstrate 4 × 4 and 8 × 8 switch fabrics in
multistage topologies based on 2 × 2 Mach–Zehnder interferom-
eter switching elements. These fabrics are integrated onto a single
chip with digital CMOS logic, device drivers, thermo-optic phase
tuners, and electro-optic phase modulators using IBM’s 90 nm sili-
con integrated nanophotonics technology. We show that the various
switch-and-driver systems are capable of delivering nanosecond-
scale reconfiguration times, low crosstalk, compact footprints, low
power dissipations, and broad spectral bandwidths. Moreover, we
validate the dynamic reconfigurability of the switch fabric chang-
ing the state of the fabric using time slots with sub-100-ns dura-
tions. We further verify the integrity of high-speed data transfers
under such dynamic operation. This chip-scale switching system
technology may provide a compelling solution to replace some
routing functionality currently implemented as bandwidth- and
power-limited electronic switch chips in high-performance com-
puting systems.

Index Terms—CMOS integrated circuits, optical switches,
photonic integrated circuits.

I. INTRODUCTION

W IDESPREAD use of point-to-point optical intercon-
nects in the current generation of high-performance

computers has been a significant factor in the continued im-
provements and record-setting performances of many of to-
day’s top machines [1]–[3]. It is envisioned that the next gener-
ation of systems will leverage an even greater number of optical
components that have also been scaled in bandwidth, density,
and power efficiency beyond those of today. As the bandwidth
bottleneck at the electro–optical interface of future systems de-
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scends into deeper levels of the package (necessitating board-
level optics, carrier-level optics, and eventually chip-level op-
tics), performing some amount of switching in the optical
domain becomes more attractive.

Consequently, an electronically controlled optical switching
technology such as micro-electro-mechanical systems (MEMS)
provides the potential to bypass the power density issues and
pin limitations that plague the future scalability of electronic
switch chips. While MEMS provides an unparalleled port count
scaling in comparison to other optical switching technologies,
its millisecond-scale reconfiguration time limits the set of in-
teresting application spaces to which it can offer performance
enhancements [4], [5]. On the other hand, the silicon photonic
platform has the potential to realize dense and low-power opti-
cal switches with nanosecond-scale reconfiguration times, while
interconnecting a low-to-moderate number of ports. This capa-
bility more broadly targets a widespread set of demands within
computer communications.

Previously, scaled switch fabrics (defined here as having four
or more input and four or more output ports) have been im-
plemented in the silicon material system using both thermo-
optic and electro-optic phase modulators [6]–[9]. We also previ-
ously reported an electro-optic scaled switch fabric [10], which
additionally was used to demonstrate a proof-of-concept pho-
tonic switching system that employed flip-chip integration to
join the fabric with digital CMOS switch drivers [11], [12].
Since then, the development of IBM’s 90 nm silicon integrated
nanophotonics technology [13] has made possible the full mono-
lithic integration of a similar switching system with enhanced
function. Monolithic integration enables increasingly sophis-
ticated optoelectronic designs and potentially reduces system
cost. We have previously made preliminary reports of mono-
lithically integrated CMOS drivers and CMOS-photonic switch
fabrics [14], [15]. Here, we expand upon these works by report-
ing additional details and improved performances.

II. SWITCHING ELEMENTS

We first describe the performance of the CMOS-
driven switching elements, based on Mach–Zehnder (MZ)
interferometers, which become the building blocks in scaled
switch fabrics. Fig. 1(a) shows a die photo of a test site that
includes four digital CMOS drivers, one of which is wired to a
2 × 2 MZ-based photonic switch [see Fig. 1(b)]. The MZ switch
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Fig. 1. (a) Die image showing a four-channel driver test site. (b) Magnified
image of the WIMZ switch outlined in (a). (c) Schematic of the digital switch
driver. (d) Custom test card.

is referred to as a wavelength-insensitive MZ (WIMZ) because
it incorporates a broadband directional coupler design, as previ-
ously reported [16]. The switch contains in one arm a forward-
biased horizontal-junction p-i-n diode driven directly from the
output of the driver. The entire switch occupies 0.02 mm2 . The
driver [see Fig. 1(c)] employs a five-stage digital buffer with
a fanout of 2. Each stage is comprised of two inverters with
the same transistor dimensions previously reported in a bulk
CMOS (electronic only) implementation [12]. The measured
output impedance of the driver is less than 10 Ω for both pMOS
and nMOS transistors at supply voltages greater than 0.9 V. Low
output impedance, particularly for the pMOS transistor, is nec-
essary in order to efficiently source the required on-state current
from the supply rail to the diode with a minimal voltage drop.
The power supply is segmented such that the first four buffer
stages receive power from the preamplifier supply rail, while
the final driver stage—and thus the device—is powered by the
output stage (OS) rail.

The chip, as in other test sites reported subsequently, is assem-
bled on a custom printed circuit board (PCB) [see Fig. 1(d)]. A
2 × 8 pin connector at the top of the PCB provides supply volt-
age and ground connections, while surface-mount SMP connec-
tors provide the moderate-speed digitized control signals to the
switch. The board contains cutouts near the center to allow fiber
access for edge coupling. Tapered lensed fibers are used with
light oriented to the transverse electric (TE) polarization. (The
MZ-based switching elements are designed for single polar-
ization; thus polarization-diversity or polarization-management
schemes must be included in the high-level design.) A 2 × 24
pin connector located at the bottom of the PCB delivers ther-
mal tuning voltages used for controlling individual switch bias
points within the 4 × 4 and 8 × 8 fabrics discussed later on, but
not specifically used in the 2 × 2 WIMZ switch reported in this
section.

The spectral response of the CMOS-driven WIMZ switch,
plotted in Fig. 2(a), is measured using a broadband infrared light
source, a polarizer, and an optical spectrum analyzer (OSA).

Fig. 2. (a) Spectral and (b) transient responses of the CMOS-driven WIMZ
switching element, plotted for the four input/output port configurations (T11 ,
T12 , T21 , and T22 ) in both the on and off states. The gray dash–dot line in (a)
denotes the −15-dB crosstalk threshold.

The OSA employs a 1-nm resolution bandwidth and records the
average of eight internal sweeps. The y-axis in Fig. 2(a) plots the
output intensity relative to the intensity in the input fiber. The
crosstalk for all states and configurations remains below –15 dB
over a 75-nm spectral bandwidth centered near a wavelength of
1520 nm. The broadband directional coupler design is successful
in making the switch well-suited to multiwavelength operation.

The transient response of the 2 × 2 WIMZ switch is shown in
Fig. 2(b). Here, a 25-MHz square-wave with 50% duty cycle is
applied to the input of the driver, VIN , while a continuous-wave
optical signal with wavelength of 1530 nm is injected into the
two input ports of the switch alternately. The light egressing
from the switch’s two output ports is amplified with an erbium-
doped fiber amplifier, received using a 10-GHz photodetector,
and viewed on a sampling oscilloscope. The turn-off and turn-on
transients (measured between 10 and 90% of the maximum) are
1.2 and 4.5 ns, respectively. The short transition times can allow
a scaled fabric comprised of these switches to be reconfigured
on a packet-by-packet basis.

For the above measurements, the switch is operated with sup-
ply voltages near 1.0 V. Fig. 3 illustrates the measured sensitiv-
ity to supply settings. Due to the sinusoidal nature of the MZ’s
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Fig. 3. Tolerance to the (a) supply voltage and (b) supply current, measured
at a wavelength of 1520 nm.

Fig. 4. Power consumption of the CMOS-driven WIMZ switch versus switch-
ing frequency.

amplitude versus phase relationship, deviation from the supply
setting that provides an optimal phase shift rapidly degrades
the crosstalk. (The same data are plotted in both Fig. 3(a) and
(b) as a function of supply voltage and current, respectively.)
Noise-tolerant photonic switch designs based on cascaded MZ
structures have been realized previously, and could alleviate this
problem [17].

The average power dissipation for the switch and driver is
plotted as a function of square-wave frequency in Fig. 4. Both
supplies are set to 1.0 V. Near zero frequency, the power con-
sumption is the average of the on-state and off-state values.
The power that is incurred by changing between states, which

TABLE I
CMOS-DRIVEN 2 × 2 WIMZ EXTRACTED POWER AND ENERGY

PERFORMANCE

Fig. 5. (a) Die image of a scaled switching system-on-chip. (b) Schematic
diagram of the CMOS logic and switch driver.

increases linearly as a function of frequency, then adds to the
zero-frequency value. From these measurements, the per-cycle
(turn-on plus turn-off) switching energy for the CMOS-driven
WIMZ is inferred to be 16 pJ, and the average holding power
is 1.6 mW. The split contributions coming from the two supply
rails can be seen in Table I.

III. SWITCH FABRICS

Next, we describe a test site implementing scaled switch
fabrics laid out in multistage topologies employing MZ-based
2 × 2 switching elements as building blocks. Fig. 5(a) shows a
die image of the site, while Fig. 5(b) displays the schematic.
Because of the large number of switch drivers used in this
site, the inputs to each driver are addressed through a serial-
to-parallel interface consisting of a 28-bit shift register. The
chip receives the serial electrical inputs (DATA, CLOCK, and
ENABLE) which control an array of parallel buffers, each ac-
cessing a digital inverter-based CMOS switch driver identical
to those described in Section II. Each driver is connected to a
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Fig. 6. (a) Topological arrangement and (b) micrograph of the 4 × 4 fabric.
(c) Topological arrangement and (d) micrograph of the 8 × 8 fabric. The dashed
lines in (a) and (c) represent 2 × 2 MZ-based switching elements.

single forward-biased horizontal-junction p-i-n diode arranged
in one arm of the MZ, which comprises one element of a larger
multiport photonic switch. These MZ switches are also identi-
cal to the one described in Section II, except that these utilize a
standard directional coupler, not specifically designed for wave-
length insensitivity, in order to reduce complexity and risk in the
scaled fabrics. Each MZ is also equipped with dual thermo-optic
tuners for phase trimming.

Static measurements on an 8 × 8 switch fabric and dynamic
measurements on a 4 × 4 switch fabric are described in this
section. The 4 × 4 fabric is arranged in a two-stage binary
tree topology, and the 8 × 8 in a custom four-stage topology
for proof-of-concept (see Fig 6). The area occupied by the se-
rial/parallel interface logic, switch drivers, 4 × 4 fabric, and
8 × 8 fabric is 0.007 mm2 , 0.015 mm2 per channel, 0.165 mm2 ,
and 0.675 mm2 , respectively.

A. 8 × 8 Mach-Zehnder-Based Switch Fabric

We demonstrate proper static operation of the 8 × 8 switch
fabric by reporting the spectral characteristics of all signal and
crosstalk paths in two illustrative states: when all switching el-
ements are off (see Fig. 7), and when all switching elements are
on (see Fig. 8). The supply voltages for the 8 × 8 fabric are
held at 1.3 V. The total static power consumed by the fabric is
4.4 mW in the off state and 32.2 mW in the on state in addition to
thermo-optic tuning power. The tuners are optimized for each of
the 16 MZ elements such that for each MZ the cross state is im-
plemented when the driver is in the off state (same as Section II).
A custom power card provides a computer controlled interface
that generates up to 32 analog tuning voltages and delivers them
to the test card. The power required to tune the 16 MZ switches
into the cross state averages 14 mW per MZ with maximum and
minimum values of 29 and 1 mW, respectively, corresponding
to a near uniform distribution of phase differences across the
16 pairs of interferometer arms. By optimizing the MZs (in the
off state) to implement the least power option of either the cross
or the bar state, average thermo-optic tuning power could be
reduced by approximately a factor of 2 over that reported here.

Spectral measurements were obtained in the same manner as
described in Section II. With all switching elements in the off
state, the crosstalk at band center (1460 nm) is –20 dB below
the signal level for each path. Across all 64 traces displayed in
Fig. 7, there is a 20-nm window (1460 nm +/− 10 nm) over
which crosstalk remains −15 dB below the signal. The mea-
sured crosstalk significantly increases when all the switching
elements are turned on. The crosstalk measured on a few paths
shown in Fig. 8 (for input ports 1, 2, 7, and 8) is as large as −5 to
−8 dB within the same bandwidth. In particular, coherence phe-
nomena are clearly identifiable on these traces, which represent
switch configurations where two crosstalk paths combine to beat
against each other causing additional wavelength dependences.
Variation across the diodes’ voltage–current relationships, the
diodes’ current–phase relationships, and/or the drivers’ output
impedances causes each of the 16 MZ switching elements to
be optimized at slightly different OS supply voltage settings.
Since there is only one OS supply voltage that powers all of the
16 MZ switching elements simultaneously (depending only on
the driver’s input state), many of the switching elements must
be operated far from their ideal supply setting, deteriorating
crosstalk performance for the fabric. A more tolerant photonic
switch design or a more flexible electronic driver design can
mitigate this limitation in future implementations. The figure
does demonstrate, however, the correct static routing operation
of the switch fabric with most paths adhering to crosstalk below
–15 dB. In addition to optical crosstalk, crosstalk arising from
the electrical or thermal sources may also deteriorate switch
performance. However, these sources of crosstalk are expected
to be secondary compared to optical crosstalk, and therefore
will be reserved for a future investigation.

B. Dynamic Routing in a 4 × 4 Switch Fabric

We demonstrate dynamic routing functionality using the sim-
pler 4 × 4 switch fabric. First extensive static spectral measure-
ments were recorded for the 4 × 4 fabric in similar fashion to
those recorded for the 8 × 8 fabric. However, only one 2 × 2 el-
ement was enabled at a time so that the OS supply voltage could
be optimized for each element within the 4 × 4 fabric. In this
manner, all relevant input/output traces were recorded for five
states corresponding to all the elements being disabled and each
of the four elements being enabled one at a time. The results
are only summarized here for brevity. Optimal supply voltage
settings ranged from 1.5 to 1.6 V for the four MZ switching ele-
ments. The phase tuners were optimized once and held constant
for all measurements, consuming an average of 8.6 mW per MZ.
The switch fabric displays a center wavelength near 1470 nm,
and demonstrates a bandwidth of 30 nm in which crosstalk re-
mains below −14 dB. The total insertion loss including fiber
coupling is recorded for two switch states: when all MZs are off
(the signal passes through two MZs in the off state) and when all
MZs are on (the signal passes through two MZs in the on state).
The measured off-state insertion loss for all four signal paths
(T14 , T22 , T33 , and T41) is 14.4 ± 0.3 dB, and the measured
on-state insertion loss for all four signal paths (T11 , T23 , T32 ,
and T44) is 16.0 ± 0.3 dB. Note that the total losses are similar
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Fig. 7. Spectral characteristics of all signal (red) and crosstalk (black) paths for the 8 × 8 fabric when all MZs are in the off state. For each plot, light is injected
into one input port while all eight output ports are recorded in succession.

Fig. 8. Spectral characteristics of all signal (red) and crosstalk (black) paths for the 8 × 8 fabric when all MZs are in the on state. For each plot, light is injected
into one input port while all eight output ports are recorded in succession.

to those reported for both the 2 × 2 MZ switching element [see
Fig. 2(a)] and the 8 × 8 switch fabric (see Fig. 7), indicating that
the bulk of these losses result from input/output fiber coupling.
Unfortunately, test sites for accurately determining the switch
loss per stage were not included in the design. The additional
1.6 dB of loss in the on state is attributed to free-carrier losses
and is consistent with the previous studies [16].

To demonstrate dynamic reconfiguration of the switching sys-
tem, the MZ states shown in Fig. 9(a) were chosen and as-
signed to four successive time slots. The experimental setup in
Fig. 9(b) was employed to characterize the switching perfor-

mance under this dynamic operation with supply voltages fixed
at 1.5 V. A continuous stream of 16 Gb/s data was injected
into any one of the fabric’s four optical input ports, while cy-
cling through these four illustrative states in succession at the
rate of 90 ns per time slot. The egressing data packets for each
input/output port configuration across the four time slots are dis-
played in Fig. 10(a). It can be verified that the switch fabric does
indeed route packets to their appropriate destination. Further-
more, even at a fixed supply voltage, the scope traces show no
observable crosstalk within the interior of any data packet win-
dow. Two traces show crosstalk present between the time slots
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Fig. 9. (a) States assigned to the four switching elements for each of the four
time slots. (b) Experimental setup used to demonstrate dynamic routing. Solid
and dashed lines represent optical and electrical connections, respectively. An
inset eye diagram shows the performance at 16 Gb/s of the reference transmitter
(bypassing the switch in the setup).

Fig. 10. (a) Scope traces for each input/output configuration demonstrating
proper routing. (b) 16-Gb/s eye diagrams recorded at the center of each packet
in (a) using time scales of 20 ps/div and a constant amplitude scale (0.7 mW
full scale).

(i.e., during the reconfiguration transient) where interpacket
guard bands would exist in a real system. This results from in-
serting a continuous stream of data rather than discrete packets.
Eye diagrams are shown in Fig. 10(b) for the data at the center
of each packet present in Fig. 10(a) providing visual verification
of the fidelity of the transmitted data signal. Fig. 11 provides an
example of the 4 × 4 switch fabric’s transition times, recorded
by injecting continuous-wave light into the fabric while dynam-
ically reconfiguring. The scaled fabric demonstrates transition
times slightly longer than those shown for the 2 × 2 switch, but
verifies the fundamentally nanosecond-scale response time of
the switching mechanism employed within fabrics such as this
one.

The measured power and energy dissipation of the switch-
ing system is obtained by applying to all drivers a square wave
with frequency swept from 1 to 4 MHz. A linear fit to the

Fig. 11. Example switching transients of the 4 × 4 fabric measured through
the path T44 . The traces are obtained by bypassing the modulator in Fig. 9(b)
so that continuous-wave light is injected into the switch fabric. Parts (a) and (b)
denote the rising and falling edges, respectively, of the corresponding packet in
Fig. 10(a). The 10/90 transition times are labeled. The scope uses a time scale
of 5 ns/div.

TABLE II
CMOS-DRIVEN 4 × 4 MZ FABRIC EXTRACTED POWER AND ENERGY

PERFORMANCE

measured power versus frequency data provides information
about the average static power and dynamic switching energy
as in Section II. Table II summarizes the extracted power and
energy parameters. For the 4 × 4 switch, the total dynamic
energy of 106 pJ/cycle consumes less than 1 mW of power
when changing states at a rate below 9 MHz, and thus adds
negligibly to the 46.5 mW of average static power consump-
tion. This static power, which is dominated by the thermo-optic
contribution, could again be reduced by applying the scheme
described in Section III-A, where a MZ switching element’s
off-state configuration (cross or bar) is assigned to be the one
which consumes less thermo-optic tuning power. Conserva-
tively, assuming that the switch facilitates four 25-Gb/s wave-
length channels, the electrical contribution (including thermal)
to the throughput-normalized energy can be estimated to be
approximately 120 fJ/bit. Dong et al. demonstrate an order-
of-magnitude reduction in thermo-optic tuning power by using



LEE et al.: MONOLITHIC SILICON INTEGRATION OF SCALED PHOTONIC SWITCH FABRICS, CMOS LOGIC, AND DEVICE DRIVER CIRCUITS 749

undercut structures [18]. Nevertheless, even without this im-
provement, contributions that arise from added laser power or
optical amplification needed to overcome switch insertion losses
are expected to dominate over the electrical contribution.

IV. CONCLUSION

We have realized 4 × 4 and 8 × 8 switch fabrics consisting
of 2 × 2 MZ interferometer switching elements integrated to-
gether with digital CMOS logic, device drivers, thermo-optic
phase tuners, and electro-optic phase modulators. The pho-
tonic switching system is fabricated in IBM’s 90 nm silicon
integrated nanophotonics technology. We have shown that the
building block switch elements are capable of delivering fast re-
configurability (<5 ns), relatively low crosstalk (<−15 dB over
bandwidth), compact footprint (0.02 mm2), low power dissipa-
tion (<2 mW), and broad spectral bandwidth (>75 nm). Fur-
thermore, the combination of these building blocks into scaled
fabrics in proof-of-concept topologies does not reveal any sig-
nificant performance limitation that cannot be straightforwardly
addressed in future designs. For the current implementation,
improvements to optical losses (including fiber coupling losses)
and further reductions in optical crosstalk may be the most
necessary advancements required for the technology to have
meaningful system impact.
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